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| ntroduction:

e Within InAs/GaSb coupled quantum wells, tunnelling between the two wells creates a so-called “inverted”
bandstructure, shown in Fig. 1 as solid lines.
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Fig. 2: Schematic of the helical, spin filtered edge
states present within a 2D Topological insulator

such as InAs/GaSb. From [1]

* The gap created by this hybridisation is so radically different to the vacuum that there must be a transition at the
edge of the material, characterised by helical, gap closing modes (Shown in Figs 1 and 2), protected
against disorder by the topology of the system. [1]

* However, scattering reduces tunnelling probability, destroying the inverted bandstructure,
leading to some trivial mid-gap states that mask the interesting edge modes, shown in Fig. 1 as dotted lines

Therefore, a detailed study of the scattering within this interesting material
is of experimental interest. Particularly interesting is how an applied gate bias
changes the scattering within the system.
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Fig. 1: “Inverted” bandstructure of an InAs /GaSb
coupled quantum well. The electron-like states are
shown in black, whereas the hole-like states are
shown in red. The topologically protected edge
modes are shown in blue and pink.
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Fig. 3 a) Carrier density within an InAs /GaSb coupled quantum well, grown by

Selective Screening of Low
Angle Scattering Events

b) Scattering timescales in an
InAs/GaSb quantum well as a
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L ¢ Contrary to previous assumptions [4], we have shown that a back gate bias
58_900 0.001 0.002 0.003 0.004 0.000 0.001 0.002 0.003 0.004 acting on the GaSb layer has a distinct effect on the transport when compared
K, (nm) Ky (nm) to a top gate acting on the InAs layer at all carrier densities.

Fig. 5 Schematic dispersions of the first (red) and second (blue) electron-like
subbands within a hybridised InAs/GaSb quantum well in the absence of an applied
gate bias (solid lines) and shifted down by an applied gate bias (dashed lines). In a)
the dispersions have been shifted down by 50 meV, whereas in b) the dispersions
have been shifted down by 100 meV [3]. These dispersions were arrived at by
diagonalising a 3 band Hamiltonian, including the highest energy hole subband and
two electron-like subbands. These bands are assumed to be parabolic, and the
coupling between the electron and hole subbands is assumed to be independent of
k.

In a) the second electron like subband (E2) should touch the first (E1), but instead a
new anticrossing gap opens. This will prevent the second electron-like subband (E2)
from being occupied until an even greater bias is applied, as in b).

* Additionally, anticrossing between the second excited electron subband and the
highest heavy hole subband results in the population of that subband being
delayed until a higher carrier density is reached.

¢ The states at the bottom of the hybridised, second electron-like subband will
follow a hole dispersion relation, resulting in their low mobility, so they do not
appear in the SdH oscillations in Fig. 4 a), but their screening is visible in the
change in quantum lifetime in 4b) [2].

¢ The proportion of these states within this new, hybridised subband with a hole
like dispersion could be controlled by shifting the energies of the GaSb layer
with a back gate, resulting in the behaviour seen at high carrier densities in Fig.
3c).
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